Network performance

Lecture 25

CS 638 Web Programming

Overview

- Measures of network performance
- Network congestion
- Caching
- □ Performance-related features of HTTP 1.1

CS 638 Web Programming – Estan & Kivolowitz

The performance of one link

- Data rate (a.k.a. bandwidth): the number of bits one can send on the link every second
 - □ Measured in Kbps, Mbps, Gbps
 - □ 1 Kbps = 1,000 bits per second
 - □ 1KB (kilobyte) = 2¹⁰ bytes (1,024 bytes)
- Propagation delay: time it takes for one bit to travel from one end of the link to the other
- Latency of a message: time from when the first bit of the message to when last bit received at other end
 - □ Latency = propagation delay + transmit time
 - □ Transmit time = message size / data rate

What makes a link "fast"?

□ It depends on message size whether propagation delay or data rate dominates latency

Link characteristics		Latency (in ms)	
	1 byte message	1 KB message	
1Kbps	1+9-0	1+8192=8193	
1ms	1+0-9		
1Mbps	10010 000-100 000	100+8.192=108.192	
100ms	100+0.008=100.008	100+6.192=106.192	
	1Kbps 1ms 1Mbps	1 byte message 1Kbps 1ms 1Mbps 100+0.008=100.008	

CS 638 Web Programming - Estan & Kivolowitz

Performance of a network path

- Path between sender and receiver has multiple links with various data rates and propagation delays
- □ The rate at which you can send data cannot exceed the smallest of the data rates of the links
 - $\hfill \square$ If your web page is too large it will take long to download
- Path latency is sum of link latencies
 - Routers on the path send message to next link only after they receive entire message from previous link
- Round-trip-time: time it takes for a small packet to go from sender to receiver and back
 - □ Time between request and reply ≥ round trip time

CS 638 Web Programming – Estan & Kivolowitz

Typical network performance

- Typical data rates for various types of links
 - □ Dial up modems 10 50 Kbps (still widely used!)
 - □ DSL around 1 Mbps
 - □ Cable TV between 1 and 10 Mbps
 - □ Local area networks between 10 Mbps and 100Mbps
 - □ High speed network backbones tens of Gbps
- Typical roundtrip times
 - □ Within local area network under 1 ms
 - □ Within U.S. between 10 and 50 ms
 - □ To overseas between 100 and 250 ms

Overview

- Measures of network performance
- Network congestion
- Caching
- □ Performance-related features of HTTP 1.1

CS 638 Web Programming - Estan & Kivolowitz

Many users share the network

- What happens when two packets that need to go on the same link arrive to router at same time?
 - Router stores one of them until it sends out the other
 - Queuing delay adds to roundtrip time
- What happens when the rate of traffic for a link is larger than the link's data rate?
 - Router queue fills up and packets are dropped
- Network congestion results in large queuing delays and many dropped packets
- Often the data rate achieved by an individual transfer is below the data rate of the network path

CS 638 Web Programming – Estan & Kivolowitz

Internet congestion control

- Core idea: when a computer observes a packet loss, it sends future traffic slower
 - If there are no packet losses and sender has data to send, rate is increased slowly
- Implemented as part of the TCP protocol by every computer on the Internet
- Due to this strategy, severe packet losses are rare
- Malicious users can still send large amounts of traffic to congest network (network floods)

Overview

- Measures of network performance
- Network congestion
- Caching
- □ Performance-related features of HTTP 1.1

CS 638 Web Programming - Estan & Kivolowitz

Local caching at client

- Your browser builds a cache of the documents you visited recently (html files, images, style sheets, etc.)
- When you request a new page the browser first checks the cache before contacting the server
 - □ Serving a request from the local cache is much faster
 - Images, style sheets, and javascript files may be shared by multiple pages, so the cache can help even with pages never visited before
- Server may mark dynamically generated pages as uncacheable
 - □ Images in such pages can still be cached

CS 638 Web Programming – Estan & Kivolowitz

In-network caches (a.k.a. proxy servers)

Goal: satisfy client request without involving origin server

- User sets browser: Web accesses via web cache
- Client sends all http requests to web cache
 - If object in web cache, it is returned to client
 - Otherwise web cache requests object from origin server, then returns object to client

W Why use network caches? Assuming cache close to client origin Advantages servers □ Smaller response time public □ Decrease traffic to distant servers (uplink often bottleneck) Disadvantages □ Introduces new point of failure □ Some overhead on misses □ Does not work with dynamic personalized content Decreasing popularity

CS 638 Web Programming – Estan & Kivolowitz

Content delivery networks

- Run by companies that own many web caches throughout the Internet (e.g. Akamai)
- □ Large web sites can buy the services of CDNs
 - Benefit: lower load at servers, lower latency at clients
 - Often CDNs carry only the images, not the actual html files
 - □ Typically URL of images in html files changed
- Clients need not configure anything
 - By cleverly manipulating DNS, the CDN makes clients retrieve the images from the nearest cache
 - You have used CDNs before

CS 638 Web Programming – Estan & Kivolowitz

Overview

- Measures of network performance
- Network congestion
- Caching
- □ Performance-related features of HTTP 1.1

HTTP and performance

- □ HTTP 1.1 introduced in 1997
- □ Most new features help improve performace
 - Support for compression
 - Persistent connections
 - Pipelining
 - Better support for caching

CS 638 Web Programming – Estan & Kivolowitz

Persistent connections

- □ HTTP 1.0 opened a separate TCP connection for each request
 - When opening a TCP connection, the client has to wait at least one roundtrip before sending the HTTP request (due to TCP handshake)
- HTTP 1.1 uses persistent connections: the same TCP connection can be used for multiple requests to the same server
 - □ Improves performance when a page contains many objects
- □ Request pipelining: the client can send next request before receiving the answer to the previous one

CS 638 Web Programming – Estan & Kivolowitz

Conditional GET: client-side caching

- Goal is not to send object if client has up-to-date cached version
- Server response contains no object if cached copy is up-to-date:

HTTP/1.0 304 Not Modified

If-modif	juest msg jied-since: <date> ponse .0 304 Not Modifier</date>		object not modified
If-modif	juest msg]_,	object
	fied-since: <date></date>]_,	modified